Anki-Cards/deck.json

628 lines
23 KiB
JSON

{
"__type__": "Deck",
"children": [
{
"__type__": "Deck",
"children": [],
"crowdanki_uuid": "891488aa-6098-11ee-b0f4-98fdb49c8b10",
"deck_config_uuid": "89148c38-6098-11ee-b0f4-98fdb49c8b10",
"desc": "",
"dyn": 0,
"extendNew": 0,
"extendRev": 0,
"media_files": [],
"name": "Algèbre",
"newLimit": null,
"newLimitToday": null,
"notes": [],
"reviewLimit": null,
"reviewLimitToday": null
},
{
"__type__": "Deck",
"children": [],
"crowdanki_uuid": "891496f6-6098-11ee-b0f4-98fdb49c8b10",
"deck_config_uuid": "891498e0-6098-11ee-b0f4-98fdb49c8b10",
"desc": "",
"dyn": 0,
"extendNew": 0,
"extendRev": 0,
"media_files": [],
"name": "Analyse",
"newLimit": null,
"newLimitToday": null,
"notes": [
{
"__type__": "Note",
"fields": [
"<br>\\[e^x \\underset{x \\to 0}=\\]<br>",
"\\[\\sum_{k=0}^n \\frac{x^k}{k!}+o(x^n)\\]<br>"
],
"guid": "N5ZhT[.Ehh",
"note_model_uuid": "8914a376-6098-11ee-b0f4-98fdb49c8b10",
"tags": [
"DL"
]
},
{
"__type__": "Note",
"fields": [
"\\[\\cosh(x)\\underset{x \\to 0}=\\]",
"<br>\\[\\sum_{k=0}^n\\frac{x^{2k}}{(2k)!}+o(x^n)\\]<br>"
],
"guid": "mryGuNfJ8$",
"note_model_uuid": "8914a376-6098-11ee-b0f4-98fdb49c8b10",
"tags": [
"DL"
]
},
{
"__type__": "Note",
"fields": [
"\\[\\sinh(x)\\underset{x\\to 0}=\\]<br>",
"\\[\\sum_{k=0}^n\\frac{x^{2k+1}}{(2k+1)!}+o(x^{2n+1})\\]"
],
"guid": "GE@?2A`*.z",
"note_model_uuid": "8914a79a-6098-11ee-b0f4-98fdb49c8b10",
"tags": [
"DL"
]
},
{
"__type__": "Note",
"fields": [
"\\[\\cos(x)\\underset{x \\to 0}=\\]<br>",
"\\[\\sum_{k=0}^n(-1)^k\\frac{x^{2k}}{(2k)!}+o(x^n)\\]<br>"
],
"guid": "uPqGT^D4K@",
"note_model_uuid": "8914a920-6098-11ee-b0f4-98fdb49c8b10",
"tags": [
"DL"
]
},
{
"__type__": "Note",
"fields": [
"\\[\\sin(x)\\underset{x\\to 0}=\\]<br>",
"\\[\\sum_{k=0}^n(-1)^k\\frac{x^{2k+1}}{(2k+1)!}+o(x^{2n+1})\\]<br>"
],
"guid": "Ph|kV*W,G7",
"note_model_uuid": "8914a920-6098-11ee-b0f4-98fdb49c8b10",
"tags": [
"DL"
]
},
{
"__type__": "Note",
"fields": [
"\\[\\tan(x)\\underset{x\\to 0}=\\]<br>",
"\\[x+\\frac{x^3}3+\\frac{2}{15}x^5+\\frac{17}{315}x^7+o(x^7)\\]<br>"
],
"guid": "w~}|__kKa=",
"note_model_uuid": "8914a920-6098-11ee-b0f4-98fdb49c8b10",
"tags": [
"DL"
]
},
{
"__type__": "Note",
"fields": [
"\\[\\frac1{1-x}\\underset{x\\to 0}=\\]<br>",
"\\[\\sum_{k=0}^nx^k+o(x^n)\\]<br>"
],
"guid": "Jn&(Epx=9e",
"note_model_uuid": "8914a920-6098-11ee-b0f4-98fdb49c8b10",
"tags": [
"DL"
]
},
{
"__type__": "Note",
"fields": [
"\\[\\frac1{1+x}\\underset{x\\to 0}=\\]<br>",
"\\[\\sum_{k=1}^n(-1)^kx^k+o(x^n)\\]<br>"
],
"guid": "oYOlJg.U?|",
"note_model_uuid": "8914a920-6098-11ee-b0f4-98fdb49c8b10",
"tags": [
"DL"
]
},
{
"__type__": "Note",
"fields": [
"\\[\\ln(1+x)\\underset{x\\to 0}=\\]<br>",
"\\[\\sum_{k=0}^n(-1)^{k-1}\\frac{x^k}k+o(x^n)\\]<br>"
],
"guid": "rO]tVm~sF}",
"note_model_uuid": "8914a920-6098-11ee-b0f4-98fdb49c8b10",
"tags": [
"DL"
]
},
{
"__type__": "Note",
"fields": [
"\\[\\ln(1-x)\\underset{x\\to 0}=\\]<br>",
"\\[\\sum_{k=1}^n\\frac{x^k}k+o(x^n)\\]<br>"
],
"guid": "NeSo>ssY59",
"note_model_uuid": "8914a920-6098-11ee-b0f4-98fdb49c8b10",
"tags": [
"DL"
]
},
{
"__type__": "Note",
"fields": [
"\\[\\arctan(x)\\underset{x\\to 0}=\\]<br>",
"\\[\\sum_{k=0}^n(-1)^k\\frac{x^{2k+1}}{2k+1}+o(x^{2n+1})\\]<br>"
],
"guid": "wA4/b=paf&",
"note_model_uuid": "8914a920-6098-11ee-b0f4-98fdb49c8b10",
"tags": [
"DL"
]
}
],
"reviewLimit": null,
"reviewLimitToday": null
},
{
"__type__": "Deck",
"children": [],
"crowdanki_uuid": "8914b96a-6098-11ee-b0f4-98fdb49c8b10",
"deck_config_uuid": "8914badc-6098-11ee-b0f4-98fdb49c8b10",
"desc": "",
"dyn": 0,
"extendNew": 0,
"extendRev": 0,
"media_files": [
"latex-2e1e571a136acd00fa27e19bf161ffbfcea4f995.png",
"latex-ec3780f71ebb6dec5f7e345fdda88e1911c2c95d.png"
],
"name": "Géométrie des groupes",
"newLimit": null,
"newLimitToday": null,
"notes": [
{
"__type__": "Note",
"fields": [
"Définition: Loi de composition interne (LCI)",
"[latex]Soit $E$ un ensemble. Une loi de composition interne dans $E$ est une application $\\mu: E \\times E \\to E$. Notons cette loi $*: \\mu(a,b) = a * b$[/latex]"
],
"guid": "Q%G#TvKFyc",
"note_model_uuid": "8914a920-6098-11ee-b0f4-98fdb49c8b10",
"tags": []
},
{
"__type__": "Note",
"fields": [
"Définition: Groupe (Abélien)",
"[latex]Soit $G$ un ensemble muni d'une loi de composition interne $*$. Le couple $(G, *)$ est un groupe si la loi $*$ est associative, possède un élément neutre $n$ et si tout élément de $G$ possède un symétrique. Si de plus la loi $*$ est commutative, alors $G$ est un groupe abélien ou commutatif. Si le groupe $G$ est $({n}, *)$ alors $G$ est trivial.[/latex]"
],
"guid": "ya3B*QYo#%",
"note_model_uuid": "8914a920-6098-11ee-b0f4-98fdb49c8b10",
"tags": []
}
],
"reviewLimit": null,
"reviewLimitToday": null
}
],
"crowdanki_uuid": "8914593e-6098-11ee-b0f4-98fdb49c8b10",
"deck_config_uuid": "89145e3e-6098-11ee-b0f4-98fdb49c8b10",
"deck_configurations": [
{
"__type__": "DeckConfig",
"autoplay": true,
"buryInterdayLearning": false,
"crowdanki_uuid": "89145e3e-6098-11ee-b0f4-98fdb49c8b10",
"dyn": false,
"interdayLearningMix": 0,
"lapse": {
"delays": [
10.0
],
"leechAction": 0,
"leechFails": 8,
"minInt": 1,
"mult": 0.0
},
"maxTaken": 60,
"name": "Default",
"new": {
"bury": false,
"delays": [
1.0,
10.0
],
"initialFactor": 2500,
"ints": [
1,
4,
0
],
"order": 1,
"perDay": 20,
"separate": true
},
"newGatherPriority": 0,
"newMix": 0,
"newPerDayMinimum": 0,
"newSortOrder": 0,
"replayq": true,
"rev": {
"bury": false,
"ease4": 1.3,
"fuzz": 0.05,
"hardFactor": 1.2,
"ivlFct": 1.0,
"maxIvl": 36500,
"minSpace": 1,
"perDay": 100
},
"reviewOrder": 0,
"timer": 0
},
{
"__type__": "DeckConfig",
"autoplay": true,
"buryInterdayLearning": false,
"crowdanki_uuid": "89148c38-6098-11ee-b0f4-98fdb49c8b10",
"dyn": false,
"interdayLearningMix": 0,
"lapse": {
"delays": [
10.0
],
"leechAction": 0,
"leechFails": 8,
"minInt": 1,
"mult": 0.0
},
"maxTaken": 60,
"name": "Default",
"new": {
"bury": false,
"delays": [
1.0,
10.0
],
"initialFactor": 2500,
"ints": [
1,
4,
0
],
"order": 1,
"perDay": 20,
"separate": true
},
"newGatherPriority": 0,
"newMix": 0,
"newPerDayMinimum": 0,
"newSortOrder": 0,
"replayq": true,
"rev": {
"bury": false,
"ease4": 1.3,
"fuzz": 0.05,
"hardFactor": 1.2,
"ivlFct": 1.0,
"maxIvl": 36500,
"minSpace": 1,
"perDay": 100
},
"reviewOrder": 0,
"timer": 0
},
{
"__type__": "DeckConfig",
"autoplay": true,
"buryInterdayLearning": false,
"crowdanki_uuid": "891498e0-6098-11ee-b0f4-98fdb49c8b10",
"dyn": false,
"interdayLearningMix": 0,
"lapse": {
"delays": [
10.0
],
"leechAction": 0,
"leechFails": 8,
"minInt": 1,
"mult": 0.0
},
"maxTaken": 60,
"name": "Default",
"new": {
"bury": false,
"delays": [
1.0,
10.0
],
"initialFactor": 2500,
"ints": [
1,
4,
0
],
"order": 1,
"perDay": 20,
"separate": true
},
"newGatherPriority": 0,
"newMix": 0,
"newPerDayMinimum": 0,
"newSortOrder": 0,
"replayq": true,
"rev": {
"bury": false,
"ease4": 1.3,
"fuzz": 0.05,
"hardFactor": 1.2,
"ivlFct": 1.0,
"maxIvl": 36500,
"minSpace": 1,
"perDay": 100
},
"reviewOrder": 0,
"timer": 0
},
{
"__type__": "DeckConfig",
"autoplay": true,
"buryInterdayLearning": false,
"crowdanki_uuid": "8914badc-6098-11ee-b0f4-98fdb49c8b10",
"dyn": false,
"interdayLearningMix": 0,
"lapse": {
"delays": [
10.0
],
"leechAction": 0,
"leechFails": 8,
"minInt": 1,
"mult": 0.0
},
"maxTaken": 60,
"name": "Default",
"new": {
"bury": false,
"delays": [
1.0,
10.0
],
"initialFactor": 2500,
"ints": [
1,
4,
0
],
"order": 1,
"perDay": 20,
"separate": true
},
"newGatherPriority": 0,
"newMix": 0,
"newPerDayMinimum": 0,
"newSortOrder": 0,
"replayq": true,
"rev": {
"bury": false,
"ease4": 1.3,
"fuzz": 0.05,
"hardFactor": 1.2,
"ivlFct": 1.0,
"maxIvl": 36500,
"minSpace": 1,
"perDay": 100
},
"reviewOrder": 0,
"timer": 0
}
],
"desc": "",
"dyn": 0,
"extendNew": 0,
"extendRev": 0,
"media_files": [],
"name": "Math",
"newLimit": null,
"newLimitToday": null,
"note_models": [
{
"__type__": "NoteModel",
"crowdanki_uuid": "8914a376-6098-11ee-b0f4-98fdb49c8b10",
"css": ".card {\n font-family: arial;\n font-size: 20px;\n text-align: center;\n color: black;\n background-color: white;\n}",
"flds": [
{
"collapsed": false,
"description": "",
"excludeFromSearch": false,
"font": "Arial",
"media": [],
"name": "Front",
"ord": 0,
"plainText": false,
"rtl": false,
"size": 20,
"sticky": false
},
{
"collapsed": false,
"description": "",
"excludeFromSearch": false,
"font": "Arial",
"media": [],
"name": "Back",
"ord": 1,
"plainText": false,
"rtl": false,
"size": 20,
"sticky": false
}
],
"latexPost": "\\end{document}",
"latexPre": "\\documentclass[12pt]{article}\n\\special{papersize=3in,5in}\n\\usepackage[utf8]{inputenc}\n\\usepackage{amssymb,amsmath}\n\\pagestyle{empty}\n\\setlength{\\parindent}{0in}\n\\begin{document}\n",
"latexsvg": false,
"name": "Basic_",
"req": [
[
0,
"any",
[
0
]
]
],
"sortf": 0,
"tags": [],
"tmpls": [
{
"afmt": "{{FrontSide}}\n\n<hr id=answer>\n\n{{Back}}",
"bafmt": "",
"bfont": "Arial",
"bqfmt": "",
"bsize": 12,
"did": null,
"name": "Card 1",
"ord": 0,
"qfmt": "{{Front}}"
}
],
"type": 0,
"vers": []
},
{
"__type__": "NoteModel",
"crowdanki_uuid": "8914a79a-6098-11ee-b0f4-98fdb49c8b10",
"css": ".card {\n font-family: arial;\n font-size: 20px;\n text-align: center;\n color: black;\n background-color: white;\n}\n",
"flds": [
{
"collapsed": false,
"description": "",
"excludeFromSearch": false,
"font": "Arial",
"name": "Front",
"ord": 0,
"plainText": false,
"rtl": false,
"size": 20,
"sticky": false
},
{
"collapsed": false,
"description": "",
"excludeFromSearch": false,
"font": "Arial",
"name": "Back",
"ord": 1,
"plainText": false,
"rtl": false,
"size": 20,
"sticky": false
}
],
"latexPost": "\\end{document}",
"latexPre": "\\documentclass[12pt]{article}\n\\special{papersize=3in,5in}\n\\usepackage[utf8]{inputenc}\n\\usepackage{amssymb,amsmath}\n\\pagestyle{empty}\n\\setlength{\\parindent}{0in}\n\\begin{document}\n",
"latexsvg": false,
"name": "Basic (and reversed card)",
"originalStockKind": 1,
"req": [
[
0,
"any",
[
0
]
]
],
"sortf": 0,
"tags": [],
"tmpls": [
{
"afmt": "{{FrontSide}}\n\n<hr id=answer>\n\n{{Back}}",
"bafmt": "",
"bfont": "",
"bqfmt": "",
"bsize": 0,
"did": null,
"name": "Card 1",
"ord": 0,
"qfmt": "{{Front}}"
}
],
"type": 0,
"vers": []
},
{
"__type__": "NoteModel",
"crowdanki_uuid": "8914a920-6098-11ee-b0f4-98fdb49c8b10",
"css": ".card {\n font-family: arial;\n font-size: 20px;\n text-align: center;\n color: black;\n background-color: white;\n}\n",
"flds": [
{
"collapsed": false,
"description": "",
"excludeFromSearch": false,
"font": "Arial",
"media": [],
"name": "Front",
"ord": 0,
"plainText": false,
"rtl": false,
"size": 20,
"sticky": false
},
{
"collapsed": false,
"description": "",
"excludeFromSearch": false,
"font": "Arial",
"media": [],
"name": "Back",
"ord": 1,
"plainText": false,
"rtl": false,
"size": 20,
"sticky": false
}
],
"latexPost": "\\end{document}",
"latexPre": "\\documentclass[12pt]{extarticle}\n\\usepackage{extsizes}\n\\special{papersize=3in,5in}\n\\usepackage[utf8]{inputenc}\n\\usepackage{amsmath,amssymb,stmaryrd,commath,esint,blkarray}\n\\pagestyle{empty}\n\\setlength{\\parindent}{0in}\n\n\\newcommand{\\avg}[1]{\\left< #1 \\right>} % for average\n\\let\\underdot=\\d % rename builtin command \\d{} to \\underdot{}\n\\renewcommand{\\d}[2]{\\frac{\\text{d} #1}{\\dif #2}} % for derivatives\n\\newcommand{\\dd}[2]{\\frac{\\text{d}^2 #1}{\\dif #2^2}} % for double derivatives\n\\newcommand{\\pdd}[2]{\\frac{\\partial^2 #1}{\\partial #2^2}}\n% for double partial derivatives\n\\let\\baraccent=\\= % rename builtin command \\= to \\baraccent\n\\renewcommand{\\=}[1]{\\stackrel{#1}{=}} % for putting numbers above =\n\n\\DeclareMathOperator{\\grad}{\\overrightarrow{\\mathrm{grad}}}\n\\DeclareMathOperator{\\rot}{\\overrightarrow{\\mathrm{rot}}}\n\\let\\divsymb=\\div\n\\let\\div\\undefined\n\\DeclareMathOperator{\\div}{\\mathrm{div}}\n\n\n\\newcommand{\\N}{\\mathbb{N}}\n\\newcommand{\\Z}{\\mathbb{Z}}\n\\newcommand{\\Q}{\\mathbb{Q}}\n\\newcommand{\\R}{\\mathbb{R}}\n\\newcommand{\\C}{\\mathbb{C}}\n\\newcommand{\\K}{\\mathbb{K}}\n\\let\\oldphi=\\phi\n\\renewcommand{\\phi}{\\varphi}\n\\let\\oldepsilon=\\epsilon\n\\renewcommand{\\epsilon}{\\varepsilon}\n\\let\\oldj=\\j\n\\renewcommand{\\j}{\\vec\\jmath}\n\\let\\oldleq=\\leq\n\\renewcommand{\\leq}{\\leqslant}\n\\let\\oldgeq=\\geq\n\\renewcommand{\\geq}{\\geqslant}\n\n\\DeclareMathOperator{\\im}{Im}\n\\DeclareMathOperator{\\ch}{ch}\n\\DeclareMathOperator{\\sh}{sh}\n\\DeclareMathOperator{\\Th}{th}\n\\DeclareMathOperator{\\argch}{argch}\n\\DeclareMathOperator{\\argsh}{argsh}\n\\DeclareMathOperator{\\argth}{argth}\n\\DeclareMathOperator{\\vect}{vect}\n\\DeclareMathOperator{\\tr}{tr}\n\\DeclareMathOperator{\\comat}{comat}\n\\DeclareMathOperator{\\Cl}{Cl}\n\\DeclareMathOperator{\\rg}{rg}\n\\DeclareMathOperator{\\Sp}{Sp}\n\\DeclareMathOperator{\\card}{card}\n\\DeclareMathOperator{\\cov}{cov}\n\n\\begin{document}\n\n%\\end{document}\n%\\end{document}\n%\\end{document}\n",
"latexsvg": false,
"name": "Basic",
"req": [
[
0,
"all",
[
0
]
]
],
"sortf": 0,
"tags": [
"Probabilité"
],
"tmpls": [
{
"afmt": "{{FrontSide}}\n\n<hr id=answer>\n\n{{Back}}",
"bafmt": "",
"bfont": "",
"bqfmt": "",
"bsize": 0,
"did": null,
"name": "Card 1",
"ord": 0,
"qfmt": "<div style='font-family: Arial; font-size: 80px;'>{{Front}}</div>\n"
}
],
"type": 0,
"vers": []
}
],
"notes": [],
"reviewLimit": null,
"reviewLimitToday": null
}